• Brucella Pinnipedialis in grey seals (Halichoerus grypus) and harbor seals (Phoca vitulina) in the Netherlands

      Kroese, Michiel V; Beckers, Lisa; Bisselink, Yvette J W M; Brasseur, Sophie; van Tulden, Peter W; Koene, Miriam G J; Roest, Hendrik I J; Ruuls, Robin C; Backer, Jantien A; IJzer, Jooske; et al. (2018-04-26)
      Brucellosis is a zoonotic disease with terrestrial or marine wildlife animals as potential reservoirs for the disease in livestock and human populations. The primary aim of this study was to assess the presence of Brucella pinnipedialis in marine mammals living along the Dutch coast and to observe a possible correlation between the presence of B. pinnipedialis and accompanying pathology found in infected animals. The overall prevalence of Brucella spp. antibodies in sera from healthy wild grey seals ( Halichoerus grypus; n=11) and harbor seals ( Phoca vitulina; n=40), collected between 2007 and 2013 ranged from 25% to 43%. Additionally, tissue samples of harbor seals collected along the Dutch shores between 2009 and 2012, were tested for the presence of Brucella spp. In total, 77% (30/39) seals were found to be positive for Brucella by IS 711 real-time PCR in one or more tissue samples, including pulmonary nematodes. Viable Brucella was cultured from 40% (12/30) real-time PCR-positive seals, and was isolated from liver, lung, pulmonary lymph node, pulmonary nematode, or spleen, but not from any PCR-negative seals. Tissue samples from lung and pulmonary lymph nodes were the main source of viable Brucella bacteria. All isolates were typed as B. pinnipedialis by multiple-locus variable number of tandem repeats analysis-16 clustering and matrix-assisted laser desorption ionization-time of flight mass spectrometry, and of sequence type ST25 by multilocus sequence typing analysis. No correlation was observed between Brucella infection and pathology. This report displays the isolation and identification of B. pinnipedialis in marine mammals in the Dutch part of the Atlantic Ocean.
    • Discovery of trehalose phospholipids reveals functional convergence with mycobacteria.

      Reinink, Peter; Buter, Jeffrey; Mishra, Vivek K; Ishikawa, Eri; Cheng, Tan-Yun; Willemsen, Peter T J; Porwollik, Steffen; Brennan, Patrick J; Heinz, Eva; Mayfield, Jacob A; et al. (2019-02-25)
      species are among the world's most prevalent pathogens. Because the cell wall interfaces with the host, we designed a lipidomics approach to reveal pathogen-specific cell wall compounds. Among the molecules differentially expressed between