• Elucidating Toxicodynamic Differences at the Molecular Scale between ZnO Nanoparticles and ZnCl in via Nontargeted Metabolomics.

      He, Erkai; Qiu, Rongliang; Cao, Xinde; Song, Lan; Peijnenburg, Willie J G M; Qiu, Hao (2020-03-17)
      Much effort has been devoted to clarifying the comparative toxicity of ZnO nanoparticles (NPs) and Zn ions; however, little is known about their toxicodynamic processes at the metabolic level. Here, we investigated the acute (2d) and chronic (7d) effects to a soil species, Enchytraeus crypticus, of two sublethal doses of ZnO-NPs and ZnCl2 (10 and 30 mg/L Zn) using ultrahigh performance liquid chromatography-quadrupole-time-of-flight/mass spectrometry-based metabolomics. The metabolomics analysis identified 99, 128, 121, and 183 significantly changed metabolites (SCMs) in E. crypticus exposed to ZnO-NPs for 2d, ZnCl2 for 2d, ZnO-NPs for 7d, and ZnCl2 for 7d, respectively, suggesting that ZnCl2 induced stronger metabolic reprogramming than ZnO-NPs, and a longer exposure time caused greater metabolite changes. Among the SCMs, 67 were shared by ZnO-NPs and ZnCl2 after 2d and 84 after 7d. These metabolites were mainly related to oxidative stress and antioxidant defense, membrane disturbance, and energy expenditure. The targeted analysis on physiological and biochemical responses further proved the metabolic observations. Nevertheless, 32 (33%) and 37 (31%) SCMs were found only in ZnO-NP treatments after 2 and 7d, respectively, suggesting that the toxicity of ZnO-NPs cannot be solely attributed to the released Zn ions. Metabolic pathway analysis revealed significant perturbations of galactose metabolism, amino sugar and nucleotide sugar metabolism, and glycerophospholipid metabolism in all test groups. Based on involvement frequency, glucose-1-phosphate, glycerol 3-phosphate, and phosphorylcholine could serve as universal biomarkers for exposure to different Zn forms. Four pathways perturbed by ZnO-NPs were nanospecific upon acute exposure and three upon chronic exposure. Our findings demonstrated that metabolomics is an effective tool for understanding the molecular toxicity mechanism and highlighted that time-series measurements are essential for discovering and comparing modes of action of metal ions and NPs.
    • The shuttling effects and associated mechanisms of different types of iron oxide nanoparticles for Cu(II) reduction by Geobacter sulfurreducens.

      Qiu, Hao; Xu, Hang; Xu, Zibo; Xia, Bing; Peijnenburg, Willie J G M; Cao, Xinde; Du, Huihui; Zhao, Ling; Qiu, Rongliang; He, Erkai (2020-07-05)
    • Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars.

      He, Erkai; Yang, Yuxi; Xu, Zibo; Qiu, Hao; Yang, Fan; Peijnenburg, Willie J G M; Zhang, Weihua; Qiu, Rongliang; Wang, Shizhong (2019-04-09)
      A two-year soil incubation experiment was performed to investigate the long-term impacts of biochars (kenaf core and sewage sludge biochar (KBC and SBC) pyrolyzed at 350 °C and 550 °C) on metal(loid)s immobilization. Both KBC and SBC can immobilize Pb and Cu in contaminated soil, whereas they showed little effects on the immobilization of Zn, Cd and As. Interactions between the biochar and soil during two-year aging changed the metal species on both soil and biochar particles. KB350 formed more biochar-mineral complexes and O-containing functional groups than KB550 and thus transferred more residual metal(loid)s to their reducible species. More metal(loid)s sorbed on the KB350 than KB550 after two-year aging. However, SBC changed the acid-soluble species of metal(loid)s into the residual species during the aging process, probably due to the release of phosphate. Upon aging, SB550 exhibited a more significant increase in the residual metal amount and more sorption of metal(loid)s on the biochar particles than SB350 due to sorption of organic carbon and formation of meta-kaolinite. A key finding of our study was that different biochars have contrasting impacts on metal speciation and lability upon 2-year aging. This should be considered in assessing the actual risk of biochar-amended soils.