• Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks.

      Jaarsma, Ryanne I; Sprong, Hein; Takumi, Katsuhisa; Kazimirova, Maria; Silaghi, Cornelia; Mysterud, Atle; Rudolf, Ivo; Beck, Relja; Földvári, Gábor; Tomassone, Laura; et al. (2019-06-28)
    • Circulation of Species and Their Exposure to Humans through .

      Azagi, Tal; Jaarsma, Ryanne I; Docters van Leeuwen, Arieke; Fonville, Manoj; Maas, Miriam; Franssen, Frits F J; Kik, Marja; Rijks, Jolianne M; Montizaan, Margriet G; Groenevelt, Margit; et al. (2021-03-24)
      Human babesiosis in Europe has been attributed to infection with Babesia divergens and, to a lesser extent, with Babesia venatorum and Babesia microti, which are all transmitted to humans through a bite of Ixodes ricinus. These Babesia species circulate in the Netherlands, but autochthonous human babesiosis cases have not been reported so far. To gain more insight into the natural sources of these Babesia species, their presence in reservoir hosts and in I. ricinus was examined. Moreover, part of the ticks were tested for co-infections with other tick borne pathogens. In a cross-sectional study, qPCR-detection was used to determine the presence of Babesia species in 4611 tissue samples from 27 mammalian species and 13 bird species. Reverse line blotting (RLB) and qPCR detection of Babesia species were used to test 25,849 questing I. ricinus. Fragments of the 18S rDNA and cytochrome c oxidase subunit I (COI) gene from PCR-positive isolates were sequenced for confirmation and species identification and species-specific PCR reactions were performed on samples with suspected mixed infections. Babesia microti was found in two widespread rodent species: Myodes glareolus and Apodemus sylvaticus, whereas B. divergens was detected in the geographically restricted Cervus elaphus and Bison bonasus, and occasionally in free-ranging Ovis aries. B. venatorum was detected in the ubiquitous Capreolus capreolus, and occasionally in free-ranging O. aries. Species-specific PCR revealed co-infections in C. capreolus and C. elaphus, resulting in higher prevalence of B. venatorum and B. divergens than disclosed by qPCR detection, followed by 18S rDNA and COI sequencing. The non-zoonotic Babesia species found were Babesia capreoli, Babesia vulpes, Babesia sp. deer clade, and badger-associated Babesia species. The infection rate of zoonotic Babesia species in questing I. ricinus ticks was higher for Babesia clade I (2.6%) than Babesia clade X (1.9%). Co-infection of B. microti with Borrelia burgdorferi sensu lato and Neoehrlichia mikurensis in questing nymphs occurred more than expected, which reflects their mutual reservoir hosts, and suggests the possibility of co-transmission of these three pathogens to humans during a tick bite. The ubiquitous spread and abundance of B. microti and B. venatorum in their reservoir hosts and questing ticks imply some level of human exposure through tick bites. The restricted distribution of the wild reservoir hosts for B. divergens and its low infection rate in ticks might contribute to the absence of reported autochthonous cases of human babesiosis in the Netherlands.
    • Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk.

      Krawczyk, Aleksandra I; van Duijvendijk, Gilian L A; Swart, Arno; Heylen, Dieter; Jaarsma, Ryanne I; Jacobs, Frans H H; Fonville, Manoj; Sprong, Hein; Takken, Willem (2020-01-20)
      In a natural woodland, we manipulated rodent densities in plots of 2500 m2 by either supplementing a critical food source (acorns) or by removing rodents during two years. Untreated plots were used as controls. Collected nymphs and rodent ear biopsies were tested for the presence of seven tick-borne microorganisms. Linear models were used to capture associations between rodents, nymphs, and pathogens.
    • Environmental surveillance during an outbreak of tularaemia in hares, the Netherlands, 2015.

      Janse, Ingmar; Maas, Miriam; Rijks, Jolianne M; Koene, Miriam; van der Plaats, Rozemarijn Qj; Engelsma, Marc; van der Tas, Peter; Braks, Marieta; Stroo, Arjan; Notermans, Daan W; et al. (2017-08-31)
      Tularaemia, a disease caused by the bacterium Francisella tularensis, is a re-emerging zoonosis in the Netherlands. After sporadic human and hare cases occurred in the period 2011 to 2014, a cluster of F. tularensis-infected hares was recognised in a region in the north of the Netherlands from February to May 2015. No human cases were identified, including after active case finding. Presence of F. tularensis was investigated in potential reservoirs and transmission routes, including common voles, arthropod vectors and surface waters. F. tularensis was not detected in common voles, mosquito larvae or adults, tabanids or ticks. However, the bacterium was detected in water and sediment samples collected in a limited geographical area where infected hares had also been found. These results demonstrate that water monitoring could provide valuable information regarding F. tularensis spread and persistence, and should be used in addition to disease surveillance in wildlife.
    • Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe.

      Mysterud, Atle; Stigum, Vetle M; Jaarsma, Ryanne I; Sprong, Hein (2019-03-25)
      Lyme borreliosis is the most common vector-borne zoonosis in the northern hemisphere, and the pathogens causing Lyme borreliosis have distinct, incompletely described transmission cycles involving multiple host groups. The mammal community in Fennoscandia differs from continental Europe, and we have limited data on potential competent and incompetent hosts of the different genospecies of Borrelia burgdorferi sensu lato (sl) at the northern distribution ranges where Lyme borreliosis is emerging. We used qPCR to determine presence of B. burgdorferi sl in tissue samples (ear) from 16 mammalian species and questing ticks from Norway, and we sequenced the 5S-23 S rDNA intergenic spacer region to determine genospecies from 1449 qPCR-positive isolates obtaining 423 sequences. All infections coming from small rodents and shrews were linked to the genospecies B. afzelii, while B. burgdorferi sensu stricto (ss) was only found in red squirrels (Sciurus vulgaris). Red squirrels were also infected with B. afzelii and B. garinii. There was no evidence of B. burgdorferi sl infection in moose (Alces alces), red deer (Cervus elaphus) or roe deer (Capreolus capreolus), confirming the role of cervids as incompetent hosts. In infected questing ticks in the two western counties, B. afzelii (67% and 75%) dominated over B. garinii (27% and 21%) and with only a few recorded B. burgdorferi ss and B. valaisiana. B. burgdorferi ss were more common in adult ticks than in nymphs, consistent with a reservoir in squirrels. Our study identifies potential competent hosts for the different genospecies, which is key to understand transmission cycles at high latitudes of Europe.
    • Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway.

      Stigum, Vetle M; Jaarsma, Ryanne I; Sprong, Hein; Rolandsen, Christer M; Mysterud, Atle (2019-01-03)
      The geographical expansion of the tick Ixodes ricinus in northern Europe is a serious concern for animal and human health. The pathogen Anaplasma phagocytophilum is transmitted by ticks and causes emergences of tick-borne fever (anaplasmosis) in livestock. The transmission dynamics of the different ecotypes of A. phagocytophilum in the ecosystems is only partly determined. Red deer and roe deer contribute to circulation of different ecotypes of A. phagocytophilum in continental Europe, while the role of moose for circulation of different ecotypes is not fully established but an important issue in northern Europe. We determined infection prevalence and ecotypes of A. phagocytophilum in moose (n = 111), red deer (n = 141), roe deer (n = 28) and questing ticks (n = 9241) in Norway. As previously described, red deer was exclusively linked to circulation of ecotype I, while roe deer was exclusively linked to circulation of ecotype II. Surprisingly, we found 58% ecotype I (n = 19) and 42% of ecotype II (n = 14) in moose. Both ecotypes were found in questing ticks in areas with multiple cervid species present, while only ecotype I was found in ticks in a region with only red deer present. Hence, the geographical distribution of ecotypes in ticks followed the distribution of cervid species present in a given region and their link to ecotype I and II. Moose probably function as reservoirs for both ecotype I and II, indicating that the ecotypes of A. phagocytophilum are not entirely host-specific and have overlapping niches. The disease hazard depends also on both host abundance and the number of immature ticks fed by each host. Our study provides novel insights in the northern distribution and expansion of tick-borne fever.
    • Seoul Virus in Pet and Feeder Rats in The Netherlands.

      Cuperus, Tryntsje; de Vries, Ankje; Hoornweg, Tabitha E; Fonville, Manoj; Jaarsma, Ryanne I; Opsteegh, Marieke; Maas, Miriam (2021-03-10)
      Seoul virus (SEOV) is a zoonotic orthohantavirus carried by rats. In humans, SEOV can cause hemorrhagic fever with renal syndrome. Recent human SEOV cases described in the USA, United Kingdom, France and the Netherlands were associated with contact with pet or feeder rats. The prevalence of SEOV in these types of rats is unknown. We collected 175 pet and feeder rats (Rattus norvegicus) from private owners, ratteries and commercial breeders/traders in the Netherlands. Lung tissue of the rats was tested using a SEOV real-time RT-qPCR and heart fluid was tested for the presence of antibodies against SEOV. In all three investigated groups, RT-qPCR-positive rats were found: in 1/29 rats from private owners (3.6%), 2/56 rats from ratteries (3.4%) and 11/90 rats from commercial breeders (12.2%). The seroprevalence was largely similar to the prevalence calculated from RT-qPCR-positive rats. The SEOV sequences found were highly similar to sequences previously found in domesticated rats in Europe. In conclusion, SEOV is spread throughout different populations of domesticated rats.